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ABSTRACT 

In medical imaging, many texture analysis methods were 
studied with different degrees of effectiveness. These last 
years, works showed the usefulness of the fractal geometry 
to characterize textures. The fractal dimension provides a 
global aspect of the texture, while the multifractal analysis 
provides a local and global aspect of the texture. In this 
study, we were interested in the detection of epileptic fit 
sources on brain SPECT images. The detection problem is 
formulated as a 3D multifractal analysis scheme. The first 
results obtained on a base of 5 patients show that this 
method can be effective for this application. 
 
Key Words—3D mutlifractal analysis, SPECT imaging, 
epilepsy, detection.   
 

1. INTRODUCTION 
 
During the last years, many works based on texture analysis 
were applied in medical image analysis [1;2]. Among the 
most wide-spread tools, the co-occurrence matrix and 
Haralick parameters [3-5], Fourier spectrum-based methods 
[6] and the Gabor filter [7;8]. Recently, fractal geometry has 
emerged as a new texture analysis way. After applications 
mainly in the discrimination of two states (healthy versus 
pathological, for example), works enabled to experience of 
the usefulness of this geometry concerning the texture 
heterogeneities detection [9;10]. First works concerning this 
field used the fractal dimension, which enables to take into 
account the degree of regularity of the organizational 
structure related to the physical system’s behaviour. This 
method gives only a global view of the surface in general 
and of the texture in particular. As an improvment, the 
multifractal analysis was used in medical imaging in various 
fields, such as the classification [11], the segmentation [12]  
 

 
 
and the discrimination between healthy and pathological 
patient [13].  
We are interested here in the multifractal analysis because it  
enables a local and global study of image irregularities. The 
multifractal approach was introduced in the 1980s with 
Mandelbrot multiplicative cascade models of energy 
dissipation in fully developed turbulence. For image 
analysis, its application is still restricted to 2D case. By this 
work, we introduce a 3D model with an application for the 
epileptic fit sources detection on SPECT images.  
 

2. METHOD 
 
2.1 Theoretical aspect 
 
We start with the following definitions due to Vehel et 
al.[14], to formulate this approach in 3D. 
 
Definition 1: Let E be a set. A paving on E is a set  of 
subsets of E containing the empty set and stable under finite 
intersection. The pair (E, ) is called a paved space. 
We note  P(E) the power set of E. 
 
Definition 2: Let (E, ) be a paved space. A Choquet  
capacity is a function c: P(E)   with the following 
properties: 
- c is non decreasing: if BA , then )B(c)A(c . 
- If (An) is an increasing sequence of subsets of  E, i.e. 

1nn AA  , then n
nn

n AcAc sup . 

- If (An) is a decreasing sequence of elements of , 

i.e. n1n AA , then n
nn

n AcinfAc . 
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We only consider Choquet capacities defined on E = [0,1[, 
and taking values in [0,1]. Let 1ncc be a sequence of 

capacities defined on [0,1[, and
1nnvj0

n
jIP  a 

sequence of partitions of [0,1[. We assume that the 
following conditions are met: 
-    0Imaxlim n

j
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Which is defined when 0)x(I)x(Ic nn

n , and 
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when this limit exists. 

This quantity n(x) is called the pointwise Hölder exponent 
of c at point x with respect to μ, μ is the Borel measure. 
In the practical, we define the local singularity coefficients, 
often called the Hölders coefficients by: 
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Where B (x) is an open-ball of diameter  centered at the 
point x. 
This quantity reflects the local behaviour of the measure μ 
around x. 
Points bearing the same coefficients can be grouped into 
sets, named iso-local singularity sets, defined by: 
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We can define above these sets with  threshold value as 
follow: 
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To characterize the above sets, we define set dimensions 
known as the Hausdorff dimension: 
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Where i1iE  is an  cover of E. 
0i

iEE , iE , 

PEi  for all i.  
Finally, we define: 

Edimf H                                (6) 
 

The description ( , fh( )) is called the local singularity 
spectrum or the Hausdorff spectrum (Hölder) of the 
multifractal measure μ. 
 
2.2 Implementation 

Since the Hausdorff dimension can not be evaluated 
directly, we use discretization of the above concepts of 
capacities and measures. Equation (2) is computed as 
follow: 
Points x are associated to voxels of 3D signal. We subdivide 
the signal by -size cube centered at voxels, rather than 
open-balls.    
We define the measure μ as the sum of the grey level 
intensities of voxels (i,j,k) contained in a cube centered at 
the voxel (x,y,z).  
Let g(x,y,z) denote the grey level at (x,y,z). 

                                                                

)z,y,x(B)k,j,i(
sum )k,j,i(g)z,y,x(                      (7) 

 
This measure represents two distributions, to known the 
spatial and sharpness distribution.  
Other types of measures can be defined, « max » and 
« min » capacities represent the sharpness of the image in 
the neighbourhood of the voxel (x,y,z). They are called 
altimetric capacities.  

 
)k,j,i(gmax)z,y,x(

)z,y,x(B)k,j,i(
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The last step in the evaluation of Hölders coefficients is to 
replace the limit of the equation (2) by the slope of the least 
squares linear fit to the log-log graph of  vs μ.   
Once Hölders coefficients obtained, we establish iso-local 
singularity sets E( ) using equation (4). The threshold value 
 of the equation is assimilated at discretization step of an 

interval. Indeed the set [ min, max] is discretized in N 
subsets of size .   
Finally, f( ) (named the singularity spectrum) is defined as 
the fractal dimension of the set E( ), which has a 
monofractal structure. Consequently we estimate f( ) by the 
box-counting method extended in 3D.  
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In a previous study [15], we generated self-affine and self-
similar multifractal models to validate these measures. The 
multifractal spectrum of each measure was a very good 
approximation of the theoretical spectrum. 
 

3. APPLICATION 

Epilepsy is a neurological disease. It is the expression of an 
abnormal, sharp and temporary functioning of the brain 
electrical activity, leading epileptic crisis, also called 
comitial crisis. Two exams can be executed for the 
diagnostic, the electroencephalogram (EEG) and SPECT 
imaging. For this last case, two acquisitions are carried out: 
an examination before the crisis called inter-ictal exam and 
another after the crisis, called per-ictal. To analyse the 
images, these two exams are rigidly registered to eliminate 
movements between the two steps then subtracted to 
determinate the regions responsible of the crisis. Usually, 
for a better localization, the result of the subtraction is 
matched with  anatomical data providing from magnetic 
resonance imaging (MRI). This technique is called SISCOM 
(Substracted Ictal Spect COregistred to MRI) [16]. 
However, in some cases and for many reasons, the method 
doest not lead to precise delimitation of epileptic fit sources. 
We apply the 3D multifractal analysis method described in 
section 2 to characterize epileptic fit sources. For the 
epileptic patient, there is heterogeneity changing between 
the two exams. Indeed the per-ictal sequence represents the 
patient in crisis, whereas the inter-ictal sequence represents 
the brain activity in a rest candition. Consequently we 
decide to study the heterogeneity changes between the two 
conditions using the singularity spectrum. We compute the 
local singularity spectrum of each voxel of inter and per-
ictal volumes, for three various multifractal measures 
(« sum », « max » and « min ») then we substract these two 
volumes to give only the important heterogeneity change 
area. Finally a connex component study is used to remove 
isolated points. 

4. RESULTS 
 
We tested the method on brain SPECT images provided by 
the Nuclear medicine centre of Lille. Tc-99m HMPAO 
brain perfusion ictal and interictal images were acquired on 
a Tomomatic 564 (Medimatic Inc., Copenhagen, Denmark). 
Thus we have two volumes 64*64*18 voxels 
(3.25*3.25*6.5 mm3). The patient base contains 7 patients 
diagnosed as epileptic (partial seizure). The seizure is 
localised in the temporal lobe. This diagnostic was realized 
by an expert.  
We apply our method on this patient base. The singularity 
spectrum is computed for the three various measures 
(« sum », « max » and « min »). The most interesting results 
are obtained with the « min » measure. Indeed, the table 1 
displays results obtained for each measure, we can see that 
the “min” measure is totally in agree with the expert 
diagnostic, while the “max” and “sum” measure don’t 
always detect the seizure. Therefore we display results 
obtained by the “min” measure. The figure 1 represents 
results obtained by the method on two patients, they are 
displayed according to three directions (transversal, coronal 
and sagittal) for a best localization of epileptic fit sources. 
The uni-lateral epilepsy character was verified by the 
method, according to the expert diagnostic. Indeed for the 
five patients, we found a left or right localization of the 
seizure, which agrees with the expert diagnostic.    
 

5. CONCLUSION AND FUTURE WORK 
 
In this paper, we presented a method for the 3D local 
singularity spectrum evaluation. It is applied on SPECT 
images in order to detect the epileptic fit sources. The 
preliminary results are encouraging and prove that this kind 
of analysis can be effective. 
As future work, we plan to test the method on frontal 
epilepsy images. Indeed, in addition to enlarge our image 
base, for this kind of epilepsies, the crisis is often less 
accentuated and therefore experts don’t always permit to 
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localize the epileptic fit sources.  Thus, it is interesting to 
quantify the contribution of such a tool. The expert could  
 
limit the epileptic fit sources, so we could have statistical 
results. Finally, we envisage to add various texture 
parameters (co-occurrence matrix, Gabor filter, etc.) to 
improve the detection. 
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(a) 

(c) 

(b)

(d)
Figure 1: Display inter-ictal (a) and per-ictal (b) images for one patient. Result of the method for two patients, 

the one with an epilepsy at left temporal lobe (c) and the other at right temporal lobe (d). Display following three 
directions (transversal, coronal and sagittal) on the MNI atlas. 
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